Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Antiviral Res ; 207: 105416, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113629

RESUMO

Cellular responses to stress generally lead to the activation of the endoplasmic reticulum-associated protein degradation (ERAD) pathway. Several lines of study support that ERAD may be playing a proviral role during flaviviral infection. A key host factor in ERAD is the valosin-containing protein (VCP), an ATPase which ushers ubiquitin-tagged proteins to degradation by the proteasome. VCP exhibits different proviral activities, such as engaging in the biogenesis of viral replication organelles and facilitating flavivirus genome uncoating after the viral particle entry. To investigate the possible antiviral value of drugs targeting VCP, we tested two inhibitors: eeyarestatin I (EEY) and xanthohumol (XAN). Both compounds were highly effective in suppressing Zika virus (ZIKV) and Usutu virus (USUV) replication during infection in cell culture. Further analysis revealed an unexpected virucidal activity for EEY, but not for XAN. Preincubation of ZIKV or USUV with EEY before inoculation to cells resulted in significant decreases in infectivity in a dose- and time-dependent manner. Viral genomes in samples previously treated with EEY were more sensitive to propidium monoazide, an intercalating agent, with 10- to 100-fold decreases observed in viral RNA levels, supporting that EEY affects viral particle integrity. Altogether, these results support that EEY is a strong virucide against two unrelated flaviviruses, encouraging further studies to investigate its potential use as a broad-acting drug or the development of improved derivatives in the treatment of flaviviral infection.


Assuntos
Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Adenosina Trifosfatases/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Flavivirus/genética , Humanos , Hidrazonas , Hidroxiureia/análogos & derivados , Substâncias Intercalantes/farmacologia , Substâncias Intercalantes/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Viral/genética , Ubiquitinas/metabolismo , Proteína com Valosina/metabolismo , Replicação Viral
2.
Nanomaterials (Basel) ; 12(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35957092

RESUMO

Cloth used for facemask material has been coated with silver nanoparticles using an aerosol method that passes pure uncoated nanoparticles through the cloth and deposits them throughout the volume. The particles have been characterized by electron microscopy and have a typical diameter of 4 nm with the atomic structure of pure metallic silver presented as an assortment of single crystals and polycrystals. The particles adhere well to the cloth fibers, and the coating consists of individual nanoparticles at low deposition times, evolving to fully agglomerated assemblies in heavy coatings. The cloth was exposed to Usutu virus and murine norovirus particles in suspension and allowed to dry, following which, the infectious virus particles were rescued by soaking the cloth in culture media. It was found that up to 98% of the virus particles were neutralized by this contact with the silver nanoparticles for optimum deposition conditions. The best performance was obtained with agglomerated films and with polycrystalline nanoparticles. The work indicates that silver nanoparticles embedded in masks can neutralize the majority of virus particles that enter the mask and thus increase the opacity of masks to infectious viruses by up to a factor of 50. In addition, the majority of the virus particles released from the mask after use are non-infectious.

3.
Antimicrob Agents Chemother ; 65(9): e0089421, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34152807

RESUMO

Zika virus (ZIKV) is a mosquito-borne pathogen responsible for neurological disorders (Guillain-Barré syndrome) and congenital malformations (microcephaly). Its ability to cause explosive epidemics, such as that of 2015 to 2016, urges the identification of effective antiviral drugs. Viral polymerase inhibitors constitute one of the most successful fields in antiviral research. Accordingly, the RNA-dependent RNA polymerase activity of flavivirus nonstructural protein 5 (NS5) provides a unique target for the development of direct antivirals with high specificity and low toxicity. Here, we describe the discovery and characterization of two novel nonnucleoside inhibitors of ZIKV polymerase. These inhibitors, TCMDC-143406 (compound 6) and TCMDC-143215 (compound 15) were identified through the screening of an open-resource library of antikinetoplastid compounds using a fluorescence-based polymerization assay based on ZIKV NS5. The two compounds inhibited ZIKV NS5 polymerase activity in vitro and ZIKV multiplication in cell culture (half-maximal effective concentrations [EC50] values of 0.5 and 2.6 µM for compounds 6 and 15, respectively). Both compounds also inhibited the replication of other pathogenic flaviviruses, namely, West Nile virus (WNV; EC50 values of 4.3 and 4.6 µM for compounds 6 and 15, respectively) and dengue virus 2 (DENV-2; EC50 values of 3.4 and 9.6 µM for compounds 6 and 15, respectively). Enzymatic assays confirmed that the polymerase inhibition was produced by a noncompetitive mechanism. Combinatorial assays revealed an antagonistic effect between both compounds, suggesting that they would bind to the same region of ZIKV polymerase. The nonnucleoside inhibitors of ZIKV polymerase here described could constitute promising lead compounds for the development of anti-ZIKV therapies and, eventually, broad-spectrum antiflavivirus drugs.


Assuntos
Vírus do Nilo Ocidental , Infecção por Zika virus , Zika virus , Animais , Antivirais/farmacologia , Replicação Viral
4.
Sci Rep ; 11(1): 13485, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188111

RESUMO

Viral triggers at the intestinal mucosa can have multiple global effects on intestinal integrity, causing elevated intestinal barrier strength and relative protection from subsequent inflammatory bowel disease (IBD) induction in various models. As viruses can interfere with the intestinal immune system both directly and indirectly through commensal bacteria, cause-effect relationships are difficult to define. Due to the complexity of putatively causative factors, our understanding of such virus-mediated protection is currently very limited. We here set out to better understand the impact that adult enteric infection with rotavirus (RV) might have on the composition of the intestinal microbiome and on the severity of IBD. We found that RV infection neither induced significant long-lasting microbiota community changes in the small or large intestine nor affected the severity of subsequent dextran sulfate sodium-induced colitis. Hence, adult murine RV infection does not exert lasting effects on intestinal homeostasis.


Assuntos
Colite/microbiologia , Microbioma Gastrointestinal , Infecções por Rotavirus , Rotavirus/metabolismo , Animais , Colite/induzido quimicamente , Sulfato de Dextrana/toxicidade , Suscetibilidade a Doenças , Feminino , Camundongos , Infecções por Rotavirus/metabolismo , Infecções por Rotavirus/microbiologia
5.
Viruses ; 13(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066055

RESUMO

Arthropod-borne flaviviruses, such as Zika virus (ZIKV), Usutu virus (USUV), and West Nile virus (WNV), are a growing cause of human illness and death around the world. Presently, no licensed antivirals to control them are available and, therefore, search for broad-spectrum antivirals, including host-directed compounds, is essential. The PI3K/Akt pathway controls essential cellular functions involved in cell metabolism and proliferation. Moreover, Akt has been found to participate in modulating replication in different viruses including the flaviviruses. In this work we studied the interaction of flavivirus NS5 polymerases with the cellular kinase Akt. In vitro NS5 phosphorylation experiments with Akt showed that flavivirus NS5 polymerases are phosphorylated and co-immunoprecipitate by Akt. Polymerase activity assays of Ala- and Glu-generated mutants for the Akt-phosphorylated residues also indicate that Glu mutants of ZIKV and USUV NS5s present a reduced primer-extension activity that was not observed in WNV mutants. Furthermore, treatment with Akt inhibitors (MK-2206, honokiol and ipatasertib) reduced USUV and ZIKV titers in cell culture but, except for honokiol, not WNV. All these findings suggest an important role for Akt in flavivirus replication although with specific differences among viruses and encourage further investigations to examine the PI3K/Akt/mTOR pathway as an antiviral potential target.


Assuntos
Infecções por Flavivirus/metabolismo , Infecções por Flavivirus/virologia , Flavivirus/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Flavivirus/efeitos dos fármacos , Genoma Viral , Humanos , Mutação , Fases de Leitura Aberta , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ligação Proteica , Proteoma , Proteômica/métodos , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/genética , Vírus do Nilo Ocidental/fisiologia , Zika virus/fisiologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
6.
Pathogens ; 10(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672588

RESUMO

Usutu virus (USUV) is a flavivirus that mainly infects wild birds through the bite of Culex mosquitoes. Recent outbreaks have been associated with an increased number of cases in humans. Despite being a growing source of public health concerns, there is yet insufficient data on the virus or host cell targets for infection control. In this work we have investigated whether the cellular kinase Akt and USUV polymerase NS5 interact and co-localize in a cell. To this aim, we performed co-immunoprecipitation (Co-IP) assays, followed by confocal microscopy analyses. We further tested whether NS5 is a phosphorylation substrate of Akt in vitro. Finally, to examine its role in viral replication, we chemically silenced Akt with three inhibitors (MK-2206, honokiol and ipatasertib). We found that both proteins are localized (confocal) and pulled down (Co-IP) together when expressed in different cell lines, supporting the fact that they are interacting partners. This possibility was further sustained by data showing that NS5 is phosphorylated by Akt. Treatment of USUV-infected cells with Akt-specific inhibitors led to decreases in virus titers (>10-fold). Our results suggest an important role for Akt in virus replication and stimulate further investigations to examine the PI3K/Akt/mTOR pathway as an antiviral target.

7.
Viruses ; 11(6)2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31212939

RESUMO

Chronic viral disease constitutes a major global health problem, with several hundred million people affected and an associated elevated number of deaths. An increasing number of disorders caused by human flaviviruses are related to their capacity to establish a persistent infection. Here we show that Usutu virus (USUV), an emerging zoonotic flavivirus linked to sporadic neurologic disease in humans, can establish a persistent infection in cell culture. Two independent lineages of Vero cells surviving USUV lytic infection were cultured over 82 days (41 cell transfers) without any apparent cytopathology crisis associated. We found elevated titers in the supernatant of these cells, with modest fluctuations during passages but no overall tendency towards increased or decreased infectivity. In addition to full-length genomes, viral RNA isolated from these cells at passage 40 revealed the presence of defective genomes, containing different deletions at the 5' end. These truncated transcripts were all predicted to encode shorter polyprotein products lacking membrane and envelope structural proteins, and most of non-structural protein 1. Treatment with different broad-range antiviral nucleosides revealed that USUV is sensitive to these compounds in the context of a persistent infection, in agreement with previous observations during lytic infections. The exposure of infected cells to prolonged treatment (10 days) with favipiravir and/or ribavirin resulted in the complete clearance of infectivity in the cellular supernatants (decrease of ~5 log10 in virus titers and RNA levels), although modest changes in intracellular viral RNA levels were recorded (<2 log10 decrease). Drug withdrawal after treatment day 10 resulted in a relapse in virus titers. These results encourage the use of persistently-infected cultures as a surrogate system in the identification of improved antivirals against flaviviral chronic disease.


Assuntos
Infecções por Flavivirus/virologia , Flavivirus/crescimento & desenvolvimento , Modelos Biológicos , Cultura de Vírus/métodos , Replicação Viral , Amidas/administração & dosagem , Amidas/farmacologia , Animais , Antivirais/administração & dosagem , Antivirais/farmacologia , Chlorocebus aethiops , Infecções por Flavivirus/tratamento farmacológico , Pirazinas/administração & dosagem , Pirazinas/farmacologia , RNA Viral/genética , Ribavirina/administração & dosagem , Ribavirina/farmacologia , Análise de Sequência de DNA , Deleção de Sequência , Inoculações Seriadas , Resultado do Tratamento , Células Vero , Carga Viral , Proteínas Virais/genética
8.
Sci Rep ; 9(1): 5397, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932009

RESUMO

Zika virus (ZIKV) is an emerging pathogen that has been associated with large numbers of cases of severe neurologic disease, including Guillain-Barré syndrome and microcephaly. Despite its recent establishment as a serious global public health concern there are no licensed therapeutics to control this virus. Accordingly, there is an urgent need to develop methods for the high-throughput screening of antiviral agents. We describe here a fluorescence-based method to monitor the real-time polymerization activity of Zika virus RNA-dependent RNA polymerase (RdRp). By using homopolymeric RNA template molecules, de novo RNA synthesis can be detected with a fluorescent dye, which permits the specific quantification and kinetics of double-strand RNA formation. ZIKV RdRp activity detected using this fluorescence-based assay positively correlated with traditional assays measuring the incorporation of radiolabeled nucleotides. We also validated this method as a suitable assay for the identification of ZIKV inhibitors targeting the viral polymerase using known broad-spectrum inhibitors. The assay was also successfully adapted to detect RNA polymerization activity by different RdRps, illustrated here using purified RdRps from hepatitis C virus and foot-and-mouth disease virus. The potential of fluorescence-based approaches for the enzymatic characterization of viral polymerases, as well as for high-throughput screening of antiviral drugs, are discussed.


Assuntos
Antivirais/farmacologia , Fluorescência , Ensaios de Triagem em Larga Escala/métodos , RNA Polimerase Dependente de RNA/metabolismo , Zika virus/enzimologia , Animais , Antivirais/isolamento & purificação , Descoberta de Drogas/métodos , Síndrome de Guillain-Barré/induzido quimicamente , Síndrome de Guillain-Barré/prevenção & controle , Humanos , Microcefalia/prevenção & controle , Microcefalia/virologia , RNA Polimerase Dependente de RNA/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Zika virus/genética , Zika virus/fisiologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-29914957

RESUMO

Flaviviruses constitute an increasing source of public health concern, with growing numbers of pathogens causing disease and geographic spread to temperate climates. Despite a large body of evidence supporting mutagenesis as a conceivable antiviral strategy, there are currently no data on the sensitivity to increased mutagenesis for Zika virus (ZIKV) and Usutu virus (USUV), two emerging flaviviral threats. In this study, we demonstrate that both viruses are sensitive to three ribonucleosides, favipiravir, ribavirin, and 5-fluorouracil, that have shown mutagenic activity against other RNA viruses while remaining unaffected by a mutagenic deoxyribonucleoside. Serial cell culture passages of ZIKV in the presence of these compounds resulted in the rapid extinction of infectivity, suggesting elevated sensitivity to mutagenesis. USUV extinction was achieved when a 10-fold dilution was applied between every passage, but not in experiments involving undiluted virus, indicating an overall lower susceptibility than ZIKV. Although the two viruses are inhibited by the same three drugs, ZIKV is relatively more susceptive to serial passage in the presence of purine analogues (favipiravir and ribavirin), while USUV replication is suppressed more efficiently by 5-fluorouracil. These differences in sensitivity typically correlate with the increases in the mutation frequencies observed in each nucleoside treatment. These results are relevant to the development of efficient therapies based on lethal mutagenesis and support the rational selection of different mutagenic nucleosides for each pathogen. We will discuss the implications of these results to the fidelity of flavivirus replication and the design of antiviral therapies based on lethal mutagenesis.


Assuntos
Flavivirus/efeitos dos fármacos , Flavivirus/genética , Mutagênese/efeitos dos fármacos , Mutagênese/genética , Mutagênicos/farmacologia , Zika virus/efeitos dos fármacos , Zika virus/genética , Amidas/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Fluoruracila/farmacologia , Taxa de Mutação , Nucleosídeos/farmacologia , Pirazinas/farmacologia , Ribavirina/farmacologia , Ribonucleosídeos/farmacologia , Inoculações Seriadas/métodos , Células Vero , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia
10.
Nature ; 544(7650): 309-315, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28405027

RESUMO

The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic 'gravity' model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already sown the seeds for an international epidemic, rendering these measures ineffective at curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing that these countries were susceptible to substantial outbreaks but at lower risk of introductions. Finally, we reveal that this large epidemic was a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help to inform interventions in future epidemics.


Assuntos
Ebolavirus/genética , Ebolavirus/fisiologia , Genoma Viral/genética , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Clima , Surtos de Doenças/estatística & dados numéricos , Ebolavirus/isolamento & purificação , Geografia , Doença pelo Vírus Ebola/epidemiologia , Humanos , Internacionalidade , Modelos Lineares , Epidemiologia Molecular , Filogenia , Viagem/legislação & jurisprudência , Viagem/estatística & dados numéricos
11.
Mol Phylogenet Evol ; 108: 49-60, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28189617

RESUMO

Horizontal gene transfer (HGT) in eukaryotic plastids and mitochondrial genomes is common, and plays an important role in organism evolution. In yeasts, recent mitochondrial HGT has been suggested between S. cerevisiae and S. paradoxus. However, few strains have been explored given the lack of accurate mitochondrial genome annotations. Mitochondrial genome sequences are important to understand how frequent these introgressions occur, and their role in cytonuclear incompatibilities and fitness. Indeed, most of the Bateson-Dobzhansky-Muller genetic incompatibilities described in yeasts are driven by cytonuclear incompatibilities. We herein explored the mitochondrial inheritance of several worldwide distributed wild Saccharomyces species and their hybrids isolated from different sources and geographic origins. We demonstrated the existence of several recombination points in mitochondrial region COX2-ORF1, likely mediated by either the activity of the protein encoded by the ORF1 (F-SceIII) gene, a free-standing homing endonuclease, or mostly facilitated by A+T tandem repeats and regions of integration of GC clusters. These introgressions were shown to occur among strains of the same species and among strains of different species, which suggests a complex model of Saccharomyces evolution that involves several ancestral hybridization events in wild environments.


Assuntos
Hibridização Genética , Mitocôndrias/genética , Saccharomyces/genética , Sequência de Bases , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genoma Mitocondrial , Geografia , Haplótipos/genética , Fases de Leitura Aberta/genética , Filogenia , Alinhamento de Sequência , Especificidade da Espécie
12.
mSphere ; 1(5)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27777985

RESUMO

Intrahost genetic diversity and replication error rates are intricately linked to RNA virus pathogenesis, with alterations in viral polymerase fidelity typically leading to attenuation during infections in vivo. We have previously shown that norovirus intrahost genetic diversity also influences viral pathogenesis using the murine norovirus model, as increasing viral mutation frequency using a mutagenic nucleoside resulted in clearance of a persistent infection in mice. Given the role of replication fidelity and genetic diversity in pathogenesis, we have now investigated whether polymerase fidelity can also impact virus transmission between susceptible hosts. We have identified a high-fidelity norovirus RNA-dependent RNA polymerase mutant (I391L) which displays delayed replication kinetics in vivo but not in cell culture. The I391L polymerase mutant also exhibited lower transmission rates between susceptible hosts than the wild-type virus and, most notably, another replication defective mutant that has wild-type levels of polymerase fidelity. These results provide the first experimental evidence that norovirus polymerase fidelity contributes to virus transmission between hosts and that maintaining diversity is important for the establishment of infection. This work supports the hypothesis that the reduced polymerase fidelity of the pandemic GII.4 human norovirus isolates may contribute to their global dominance. IMPORTANCE Virus replication fidelity and hence the intrahost genetic diversity of viral populations are known to be intricately linked to viral pathogenesis and tropism as well as to immune and antiviral escape during infection. In this study, we investigated whether changes in replication fidelity can impact the ability of a virus to transmit between susceptible hosts by the use of a mouse model for norovirus. We show that a variant encoding a high-fidelity polymerase is transmitted less efficiently between mice than the wild-type strain. This constitutes the first experimental demonstration that the polymerase fidelity of viruses can impact transmission of infection in their natural hosts. These results provide further insight into potential reasons for the global emergence of pandemic human noroviruses that display alterations in the replication fidelity of their polymerases compared to nonpandemic strains.

13.
Virology ; 494: 257-66, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27136067

RESUMO

We previously characterized a foot-and-mouth disease virus (FMDV) with three amino acid replacements in its polymerase (3D) that conferred resistance to the mutagenic nucleoside analogue ribavirin. Here we show that passage of this mutant in the presence of high ribavirin concentrations resulted in selection of viruses with the additional replacement I248T in 2C. This 2C substitution alone (even in the absence of replacements in 3D) increased FMDV fitness mainly in the presence of ribavirin, prevented an incorporation bias in favor of A and U associated with ribavirin mutagenesis, and conferred the ATPase activity of 2C decreased sensitivity to ribavirin-triphosphate. Since in previous studies we described that 2C with I248T was selected under different selective pressures, this replacement qualifies as a joker substitution in FMDV evolution. The results have identified a role of 2C in nucleotide incorporation, and have unveiled a new polymerase-independent mechanism of virus escape to lethal mutagenesis.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Viabilidade Microbiana/genética , Mutação , Adenosina Trifosfatases/metabolismo , Antígenos Virais/genética , Antígenos Virais/metabolismo , Antivirais/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Relação Dose-Resposta a Droga , Farmacorresistência Viral , Ativação Enzimática , Vírus da Febre Aftosa/efeitos dos fármacos , Cinética , Viabilidade Microbiana/efeitos dos fármacos , Ribavirina/farmacologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
14.
PLoS Med ; 13(4): e1001997, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27093560

RESUMO

BACKGROUND: TKM-130803, a small interfering RNA lipid nanoparticle product, has been developed for the treatment of Ebola virus disease (EVD), but its efficacy and safety in humans has not been evaluated. METHODS AND FINDINGS: In this single-arm phase 2 trial, adults with laboratory-confirmed EVD received 0.3 mg/kg of TKM-130803 by intravenous infusion once daily for up to 7 d. On days when trial enrolment capacity was reached, patients were enrolled into a concurrent observational cohort. The primary outcome was survival to day 14 after admission, excluding patients who died within 48 h of admission. After 14 adults with EVD had received TKM-130803, the pre-specified futility boundary was reached, indicating a probability of survival to day 14 of ≤0.55, and enrolment was stopped. Pre-treatment geometric mean Ebola virus load in the 14 TKM-130803 recipients was 2.24 × 109 RNA copies/ml plasma (95% CI 7.52 × 108, 6.66 × 109). Two of the TKM-130803 recipients died within 48 h of admission and were therefore excluded from the primary outcome analysis. Of the remaining 12 TKM-130803 recipients, nine died and three survived. The probability that a TKM-130803 recipient who survived for 48 h will subsequently survive to day 14 was estimated to be 0.27 (95% CI 0.06, 0.58). TKM-130803 infusions were well tolerated, with 56 doses administered and only one possible infusion-related reaction observed. Three patients were enrolled in the observational cohort, of whom two died. CONCLUSIONS: Administration of TKM-130803 at a dose of 0.3 mg/kg/d by intravenous infusion to adult patients with severe EVD was not shown to improve survival when compared to historic controls. TRIAL REGISTRATION: Pan African Clinical Trials Registry PACTR201501000997429.


Assuntos
Antivirais/uso terapêutico , Ebolavirus/genética , Doença pelo Vírus Ebola/tratamento farmacológico , RNA Interferente Pequeno/uso terapêutico , RNA Viral/genética , Terapêutica com RNAi/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Ebolavirus/patogenicidade , Feminino , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/mortalidade , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Nanopartículas , RNA Interferente Pequeno/administração & dosagem , RNA Viral/sangue , Terapêutica com RNAi/efeitos adversos , Serra Leoa , Análise de Sobrevida , Fatores de Tempo , Resultado do Tratamento , Carga Viral/efeitos dos fármacos , Carga Viral/genética , Adulto Jovem
15.
J Infect Dis ; 213 Suppl 1: S27-31, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26744429

RESUMO

Human noroviruses are a leading cause of gastroenteritis worldwide, yet there are no licensed antivirals. There is an urgent need for norovirus therapeutics, particularly for chronic infections in immunocompromised individuals, but also a potential need for prophylactic use in epidemics. Continued research has led to the identification of compounds that inhibit norovirus replication in vitro and, at least in some cases, are also effective in vivo against murine norovirus. Progress has included classical approaches targeting viral proteins and harnessing the antiviral action of interferon, strategies targeting essential host cell factors, and novel strategies exploiting the high mutation rate of noroviruses.


Assuntos
Antivirais/uso terapêutico , Infecções por Caliciviridae/tratamento farmacológico , Gastroenterite/tratamento farmacológico , Mutagênese/efeitos dos fármacos , Norovirus/efeitos dos fármacos , Antiparasitários/uso terapêutico , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Gastroenterite/epidemiologia , Gastroenterite/virologia , Humanos , Nitrocompostos , Norovirus/genética , Tiazóis/uso terapêutico , Vacinas Virais , Replicação Viral/efeitos dos fármacos
16.
Virus Evol ; 2(1): vew016, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28694998

RESUMO

To end the largest known outbreak of Ebola virus disease (EVD) in West Africa and to prevent new transmissions, rapid epidemiological tracing of cases and contacts was required. The ability to quickly identify unknown sources and chains of transmission is key to ending the EVD epidemic and of even greater importance in the context of recent reports of Ebola virus (EBOV) persistence in survivors. Phylogenetic analysis of complete EBOV genomes can provide important information on the source of any new infection. A local deep sequencing facility was established at the Mateneh Ebola Treatment Centre in central Sierra Leone. The facility included all wetlab and computational resources to rapidly process EBOV diagnostic samples into full genome sequences. We produced 554 EBOV genomes from EVD cases across Sierra Leone. These genomes provided a detailed description of EBOV evolution and facilitated phylogenetic tracking of new EVD cases. Importantly, we show that linked genomic and epidemiological data can not only support contact tracing but also identify unconventional transmission chains involving body fluids, including semen. Rapid EBOV genome sequencing, when linked to epidemiological information and a comprehensive database of virus sequences across the outbreak, provided a powerful tool for public health epidemic control efforts.

17.
Euro Surveill ; 20(40)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539753

RESUMO

The Magazine Wharf area, Freetown, Sierra Leone was a focus of ongoing Ebola virus transmission from late June 2015. Viral genomes linked to this area contain a series of 13 T to C substitutions in a 150 base pair intergenic region downstream of viral protein 40 open reading frame, similar to the Ebolavirus/H.sapiens-wt/SLE/2014/Makona-J0169 strain (J0169) detected in the same town in November 2014. This suggests that recently circulating viruses from Freetown descend from a J0169-like virus.


Assuntos
Surtos de Doenças , Ebolavirus/genética , Doença pelo Vírus Ebola/epidemiologia , Ebolavirus/isolamento & purificação , Genoma Viral , Genótipo , Doença pelo Vírus Ebola/diagnóstico , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serra Leoa
18.
Elife ; 3: e03679, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25333492

RESUMO

Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Mutagênese/genética , Norovirus/genética , Norovirus/fisiologia , Pirazinas/farmacologia , Replicação Viral/genética , Animais , Infecções por Caliciviridae/virologia , Células Cultivadas , Fezes/virologia , Masculino , Camundongos Endogâmicos C57BL , Mutagênese/efeitos dos fármacos , Taxa de Mutação , Norovirus/efeitos dos fármacos , Norovirus/patogenicidade , RNA Viral/análise , Ribavirina/farmacologia , Inoculações Seriadas , Replicação Viral/efeitos dos fármacos
19.
Curr Protoc Microbiol ; 33: 15K.2.1-61, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24789596

RESUMO

Murine norovirus (MNV) is a positive-sense, plus-stranded RNA virus in the Caliciviridae family. It is the most common pathogen in biomedical research colonies. MNV is also related to the human noroviruses, which cause the majority of nonbacterial gastroenteritis worldwide. Like the human noroviruses, MNV is an enteric virus that replicates in the intestine and is transmitted by the fecal-oral route. MNV replicates in murine macrophages and dendritic cells in cells in culture and in the murine host. This virus is often used to study mechanisms in norovirus biology, because human noroviruses are refractory to growth in cell culture. MNV combines the availability of a cell culture and reverse genetics system with the ability to study infection in the native host. Herein, we describe a panel of techniques that are commonly used to study MNV biology.


Assuntos
Norovirus/crescimento & desenvolvimento , Cultura de Vírus , Animais , Linhagem Celular , Centrifugação com Gradiente de Concentração , Césio , Cloretos , Ensaio de Imunoadsorção Enzimática , Genoma Viral , Humanos , Camundongos , Mutagênese , Norovirus/genética , Reação em Cadeia da Polimerase , Recombinação Genética , Genética Reversa , Replicação Viral
20.
Arch. venez. pueric. pediatr ; 77(1): 1-3, mar. 2014.
Artigo em Espanhol | LILACS | ID: lil-740241
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...